3.371 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=303 \[ \frac {a (A b-a B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\left (-5 a^2 B+3 a A b+2 b^2 B\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b^2 d \left (a^2-b^2\right )}+\frac {\left (-5 a^3 B+3 a^2 A b+4 a b^2 B-2 A b^3\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \left (a^2-b^2\right )}+\frac {a^2 \left (-5 a^3 B+3 a^2 A b+7 a b^2 B-5 A b^3\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^4 d (a-b) (a+b)^2}-\frac {\left (-15 a^4 B+9 a^3 A b+16 a^2 b^2 B-12 a A b^3+2 b^4 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^4 d \left (a^2-b^2\right )} \]

[Out]

(3*A*a^2*b-2*A*b^3-5*B*a^3+4*B*a*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/
2*c),2^(1/2))/b^3/(a^2-b^2)/d-1/3*(9*A*a^3*b-12*A*a*b^3-15*B*a^4+16*B*a^2*b^2+2*B*b^4)*(cos(1/2*d*x+1/2*c)^2)^
(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^4/(a^2-b^2)/d+a^2*(3*A*a^2*b-5*A*b^3-5*B*a^3+
7*B*a*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/(a
-b)/b^4/(a+b)^2/d+a*(A*b-B*a)*cos(d*x+c)^(3/2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))-1/3*(3*A*a*b-5*B*a^2+
2*B*b^2)*sin(d*x+c)*cos(d*x+c)^(1/2)/b^2/(a^2-b^2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.93, antiderivative size = 303, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {2989, 3049, 3059, 2639, 3002, 2641, 2805} \[ -\frac {\left (9 a^3 A b+16 a^2 b^2 B-15 a^4 B-12 a A b^3+2 b^4 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^4 d \left (a^2-b^2\right )}+\frac {\left (3 a^2 A b-5 a^3 B+4 a b^2 B-2 A b^3\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \left (a^2-b^2\right )}+\frac {a^2 \left (3 a^2 A b-5 a^3 B+7 a b^2 B-5 A b^3\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^4 d (a-b) (a+b)^2}+\frac {a (A b-a B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\left (-5 a^2 B+3 a A b+2 b^2 B\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b^2 d \left (a^2-b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^2,x]

[Out]

((3*a^2*A*b - 2*A*b^3 - 5*a^3*B + 4*a*b^2*B)*EllipticE[(c + d*x)/2, 2])/(b^3*(a^2 - b^2)*d) - ((9*a^3*A*b - 12
*a*A*b^3 - 15*a^4*B + 16*a^2*b^2*B + 2*b^4*B)*EllipticF[(c + d*x)/2, 2])/(3*b^4*(a^2 - b^2)*d) + (a^2*(3*a^2*A
*b - 5*A*b^3 - 5*a^3*B + 7*a*b^2*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a - b)*b^4*(a + b)^2*d) - ((3
*a*A*b - 5*a^2*B + 2*b^2*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*b^2*(a^2 - b^2)*d) + (a*(A*b - a*B)*Cos[c + d*
x]^(3/2)*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2989

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((b*c - a*d)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)
*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[
e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (
A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*d)
*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx &=\frac {a (A b-a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\int \frac {\sqrt {\cos (c+d x)} \left (-\frac {3}{2} a (A b-a B)+b (A b-a B) \cos (c+d x)+\frac {1}{2} \left (3 a A b-5 a^2 B+2 b^2 B\right ) \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx}{b \left (a^2-b^2\right )}\\ &=-\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}+\frac {a (A b-a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {2 \int \frac {\frac {1}{4} a \left (3 a A b-5 a^2 B+2 b^2 B\right )-\frac {1}{2} b \left (3 a A b-2 a^2 B-b^2 B\right ) \cos (c+d x)-\frac {3}{4} \left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 b^2 \left (a^2-b^2\right )}\\ &=-\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}+\frac {a (A b-a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {2 \int \frac {-\frac {1}{4} a b \left (3 a A b-5 a^2 B+2 b^2 B\right )-\frac {1}{4} \left (9 a^3 A b-12 a A b^3-15 a^4 B+16 a^2 b^2 B+2 b^4 B\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 b^3 \left (a^2-b^2\right )}+\frac {\left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 b^3 \left (a^2-b^2\right )}\\ &=\frac {\left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 \left (a^2-b^2\right ) d}-\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}+\frac {a (A b-a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\left (a^2 \left (3 a^2 A b-5 A b^3-5 a^3 B+7 a b^2 B\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^4 \left (a^2-b^2\right )}-\frac {\left (9 a^3 A b-12 a A b^3-15 a^4 B+16 a^2 b^2 B+2 b^4 B\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 b^4 \left (a^2-b^2\right )}\\ &=\frac {\left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 \left (a^2-b^2\right ) d}-\frac {\left (9 a^3 A b-12 a A b^3-15 a^4 B+16 a^2 b^2 B+2 b^4 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^4 \left (a^2-b^2\right ) d}+\frac {a^2 \left (3 a^2 A b-5 A b^3-5 a^3 B+7 a b^2 B\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{(a-b) b^4 (a+b)^2 d}-\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}+\frac {a (A b-a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.24, size = 318, normalized size = 1.05 \[ \frac {4 \sin (c+d x) \sqrt {\cos (c+d x)} \left (\frac {3 a^2 (a B-A b)}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}+2 B\right )-\frac {\frac {8 \left (2 a^2 B-3 a A b+b^2 B\right ) \left ((a+b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{a+b}+\frac {2 \left (5 a^3 B-3 a^2 A b-8 a b^2 B+6 A b^3\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}+\frac {6 \left (5 a^3 B-3 a^2 A b-4 a b^2 B+2 A b^3\right ) \sin (c+d x) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt {\sin ^2(c+d x)}}}{(a-b) (a+b)}}{12 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^2,x]

[Out]

(4*Sqrt[Cos[c + d*x]]*(2*B + (3*a^2*(-(A*b) + a*B))/((a^2 - b^2)*(a + b*Cos[c + d*x])))*Sin[c + d*x] - ((2*(-3
*a^2*A*b + 6*A*b^3 + 5*a^3*B - 8*a*b^2*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (8*(-3*a*A*b +
2*a^2*B + b^2*B)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(a + b) +
(6*(-3*a^2*A*b + 2*A*b^3 + 5*a^3*B - 4*a*b^2*B)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b
)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1
])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/((a - b)*(a + b)))/(12*b^2*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [B]  time = 4.85, size = 1066, normalized size = 3.52 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/3/b^4/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)*(-4*B*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+6*A*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*
d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-9*a^2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-b^2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+2*B*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)-4*a^2/b^3*(
3*A*b-4*B*a)/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-2*a^3*(A*b-B*a)/b^4*(-b^2/
a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+
a-b)-1/2/(a+b)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1
/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-
2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))+1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2
)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*
d*x+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(5/2)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^2,x)

[Out]

int((cos(c + d*x)^(5/2)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________